English
United States
Sign in
Tip from find-more-books.com
Similar books
More/other books that might be very similar to this book
Search tools
Book recommendations
Latest news
Advertising
FILTER
- 0 Results
Lowest price: 80.99 €, highest price: 97.99 €, average price: 84.39 €
Active Plasmonics and Tuneable Plasmonic Metamaterials - Anatoly V. Zayats
book is out-of-stock
(*)
Anatoly V. Zayats:
Active Plasmonics and Tuneable Plasmonic Metamaterials - new book

ISBN: 9781118634424

ID: 9781118634424

Inhaltsangabe< p> Preface xiii< /p> < p> Contributors xvii< /p> < p> < b> 1 Spaser, Plasmonic Amplification, and Loss Compensation 1< /b> < br /> < i> Mark I. Stockman< /i> < /p> < p> 1.1 Introduction to Spasers and Spasing 1< /p> < p> 1.2 Spaser Fundamentals 2< /p> < p> 1.2.1 Brief Overview of the Latest Progress in Spasers 5< /p> < p> 1.3 Quantum Theory of Spaser 7< /p> < p> 1.3.1 Surface Plasmon Eigenmodes and Their Quantization 7< /p> < p> 1.3.2 Quantum Density Matrix Equations (Optical Bloch Equations) for Spaser 9< /p> < p> 1.3.3 Equations for CW Regime 11< /p> < p> 1.3.4 Spaser operation in CW Mode 15< /p> < p> 1.3.5 Spaser as Ultrafast Quantum Nanoamplifier 17< /p> < p> 1.3.6 Monostable Spaser as a Nanoamplifier in Transient Regime 18< /p> < p> 1.4 Compensation of Loss by Gain and Spasing 22< /p> < p> 1.4.1 Introduction to Loss Compensation by Gain 22< /p> < p> 1.4.2 Permittivity of Nanoplasmonic Metamaterial 22< /p> < p> 1.4.3 Plasmonic Eigenmodes and Effective Resonant Permittivity of Metamaterials 24< /p> < p> 1.4.4 Conditions of Loss Compensation by Gain and Spasing 25< /p> < p> 1.4.5 Discussion of Spasing and Loss Compensation by Gain 27< /p> < p> 1.4.6 Discussion of Published Research on Spasing and Loss Compensations 29< /p> < p> < b> 2 Nonlinear Effects in Plasmonic Systems 41< /b> < br /> < i> Pavel Ginzburg and Meir Orenstein< /i> < /p> < p> 2.1 Introduction 41< /p> < p> 2.2 Metallic Nonlinearities& mdash Basic Effects and Models 43< /p> < p> 2.2.1 Local Nonlinearity& mdash Transients by Carrier Heating 43< /p> < p> 2.2.2 Plasma Nonlinearity& mdash The Ponderomotive Force 45< /p> < p> 2.2.3 Parametric Process in Metals 46< /p> < p> 2.2.4 Metal Damage and Ablation 48< /p> < p> 2.3 Nonlinear Propagation of Surface Plasmon Polaritons 49< /p> < p> 2.3.1 Nonlinear SPP Modes 50< /p> < p> 2.3.2 Plasmon Solitons 50< /p> < p> 2.3.3 Nonlinear Plasmonic Waveguide Couplers 54< /p> < p> 2.4 Localized Surface Plasmon Nonlinearity 55< /p> < p> 2.4.1 Cavities and Nonlinear Interactions Enhancement 56< /p> < p> 2.4.2 Enhancement of Nonlinear Vacuum Effects 58< /p> < p> 2.4.3 High Harmonic Generation 60< /p> < p> 2.4.4 Localized Field Enhancement Limitations 60< /p> < p> 2.5 Summary 62< /p> < p> < b> 3 Plasmonic Nanorod Metamaterials as a Platform for Active Nanophotonics 69< /b> < br /> < i> Gregory A. Wurtz, Wayne Dickson, Anatoly V. Zayats, Antony Murphy, and Robert J. Pollard< /i> < /p> < p> 3.1 Introduction 69< /p> < p> 3.2 Nanorod Metamaterial Geometry 71< /p> < p> 3.3 Optical Properties 72< /p> < p> 3.3.1 Microscopic Description of the Metamaterial Electromagnetic Modes 72< /p> < p> 3.3.2 Effective Medium Theory of the Nanorod Metamaterial 76< /p> < p> 3.3.3 Epsilon-Near-Zero Metamaterials and Spatial Dispersion Effects 79< /p> < p> 3.3.4 Guided Modes in the Anisotropic Metamaterial Slab 82< /p> < p> 3.4 Nonlinear Effects in Nanorod Metamaterials 82< /p> < p> 3.4.1 Nanorod Metamaterial Hybridized with Nonlinear Dielectric 84< /p> < p> 3.4.2 Intrinsic Metal Nonlinearity of Nanorod Metamaterials 85< /p> < p> 3.5 Molecular Plasmonics in Metamaterials 89< /p> < p> 3.6 Electro-Optical Effects in Plasmonic Nanorod Metamaterial Hybridized with Liquid Crystals 97< /p> < p> 3.7 Conclusion 98< /p> < p> < b> 4 Transformation Optics for Plasmonics 105< /b> < br /> < i> Alexandre Aubry and John B. Pendry< /i> < /p> < p> 4.1 Introduction 105< /p> < p> 4.2 The Conformal Transformation Approach 108< /p> < p> 4.2.1 A Set of Canonic Plasmonic Structures 109< /p> < p> 4.2.2 Perfect Singular Struct < /p> < p> 4.6.3 Fluorescence Enhancement 137< /p> < p> 4.6.3.1 Fluorescence Enhancement in the Near-Field of Nanoantenna 138< /p> < p> 4.6.3.2 The CT Approach 139< /p> < p> 4.7 Nonlocal effects 142< /p> < p> 4.7.1 Conformal Mapping of Nonlocality 142< /p> < p> 4.7.2 Toward the Physics of Local Dimers 143< /p> < p> 4.8 Summary and Outlook 145< /p> < p> < b> 5 Loss Compensation and Amplification of Surface Plasmon Polaritons 153< /b> < br /> < i> Pierre Berini< /i> < /p> < p> 5.1 Introduction 153< /p> < p> 5.2 Surface Plasmon Waveguides 154< /p> < p> 5.2.1 Unidimensional Structures 154< /p> < p> 5.2.2 Bidimensional Structures 156< /p> < p> 5.2.3 Confinement-Attenuation Trade-Off 156< /p> < p> 5.2.4 Optical Processes Involving SPPs 157< /p> < p> 5.3 Single Interface 157< /p> < p> 5.3.1 Theoretical 157< /p> < p> 5.3.2 Experimental 158< /p> < p> 5.4 Symmetric Metal Films 160< /p> < p> 5.4.1 Gratings 160< /p> < p> 5.4.2 Theoretical 160< /p> < p> 5.4.3 Experimental 161< /p> < p> 5.5 Metal Clads 163< /p> < p> 5.5.1 Theoretical 164< /p> < p> 5.5.2 Experimental 164< /p> < p> 5.6 Other Structures 164< /p> < p> 5.6.1 Dielectric-Loaded SPP Waveguides 164< /p> < p> 5.6.2 Hybrid SPP Waveguide 165< /p> < p> 5.6.3 Nanostructures 166< /p> < p> 5.7 Conclusions 166< /p> < p> < b> 6 Controlling Light Propagation with Interfacial Phase Discontinuities 171< /b> < br /> < i> Nanfang Yu, Mikhail A. Kats, Patrice Genevet, Francesco Aieta, Romain Blanchard, Guillaume Aoust, Zeno Gaburro, and < /i> < i> Federico Capasso< /i> < /p> < p> 6.1 Phase Response of Optical Antennas 172< /p> < p> 6.1.1 Introduction 172< /p> < p> 6.1.2 Single Oscillator Model for Linear Optical Antennas 174< /p> < p> 6.1.3 Two-Oscillator Model for 2D Structures Supporting Two Orthogonal Plasmonic Modes 176< /p> < p> 6.1.4 Analytical Models for V-Shaped Optical Antennas 179< /p> < p> 6.1.5 Optical Properties of V-Shaped Antennas: Experiments and Simulations 183< /p> < p> 6.2 Applications of Phased Optical Antenna Arrays 186< /p> < p> 6.2.1 Generalized Laws of Reflection and Refraction: Meta-Interfaces with Phase Discontinuities 186< /p> < p> 6.2.2 Out-of-Plane Reflection and Refraction of Light by Meta-Interfaces 192< /p> < p> 6.2.3 Giant and Tuneable Optical Birefringence 197< /p> < p> 6.2.4 Vortex Beams Created by Meta-Interfaces 200< /p> < p> < b> 7 Integrated Plasmonic Detectors 219< /b> < br /> < i> Pieter Neutens and Paul Van Dorpe< /i> < /p> < p> 7.1 Introduction 219< /p> < p> 7.2 Electrical Detection of Surface Plasmons 221< /p> < p> 7.2.1 Plasmon Detection with Tunnel Junctions 221< /p> < p> 7.2.2 Plasmon-Enhanced Solar Cells 222< /p> < p> 7.2.3 Plasmon-Enhanced Photodetectors 225< /p> < p> 7.2.4 Waveguide-Integrated Surface Plasmon Polariton Detectors 232< /p> < p> 7.3 Outlook 236< /p> < p> < b> 8 Terahertz Plasmonic Surfaces for Sensing 243< /b> < br /> < i> Stephen M. Hanham and Stefan A. Maier< /i> < /p> < p> 8.1 The Terahertz Region for Sensing 244< /p> < p> 8.2 THz Plasmonics 244< br /> < br /> 8.3 SPPs on Semiconductor Surfaces 245< /p> < p> 8.3.1 Active Control of Semiconductor Plasmonics 247< /p> < p> 8.4 SSPP on Structured Metal Surfaces 247< /p> < p> 8.5 THz Plasmonic Antennas 249< /p> < p> 8.6 Extraordinary Transmission 253< /p> < p> 8.7 THz Plasmons on Graphene 255< /p> < p> < b> 9 Subwavelength Imaging by Extremely Anisotropic Media 261< /b> < br /> < i> Pavel A. Belov< /i> < /p> < p> 9.1 Introduction to Canalization Regime of Subwavelength Imaging 261< /p> < p> 9.2 W Nonlinear Materials for Controlling Nanoslit Lenses 300< /p> < p> 10.4 Lamellar Structures with Hyperbolic Dispersion Enable Subwavelength Focusing with Metallic Nanoslits 301< /p> < p> 10.4.1 Active Lamellar Structures with Hyperbolic Dispersion 302< /p> < p> 10.4.2 Subwavelength Focusing with Active Lamellar Structures 307< /p> < p> 10.4.3 Experimental Demonstration of Subwavelength Diffraction 308< /p> < p> 10.5 Summary 313< /p> < p> Acknowledgments 313< /p> < p> References 313< /p> Active Plasmonics and Tuneable Plasmonic Metamaterials: Inhaltsangabe< p> Preface xiii< /p> < p> Contributors xvii< /p> < p> < b> 1 Spaser, Plasmonic Amplification, and Loss Compensation 1< /b> < br /> < i> Mark I. Stockman< /i> < /p> < p> 1.1 Introduction to Spasers and Spasing 1< /p> < p> 1.2 Spaser Fundamentals 2< /p> < p> 1.2.1 Brief Overview of the Latest Progress in Spasers 5< /p> < p> 1.3 Quantum Theory of Spaser 7< /p> < p> 1.3.1 Surface Plasmon Eigenmodes and Their Quantization 7< /p> < p> 1.3.2 Quantum Density Matrix Equations (Optical Bloch Equations) for Spaser 9< /p> < p> 1.3.3 Equations for CW Regime 11< /p> < p> 1.3.4 Spaser operation in CW Mode 15< /p> < p> 1.3.5 Spaser as Ultrafast Quantum Nanoamplifier 17< /p> < p> 1.3.6 Monostable Spaser as a Nanoamplifier in Transient Regime 18< /p> < p> 1.4 Compensation of Loss by Gain and Spasing 22< /p> < p> 1.4.1 Introduction to Loss Compensation by Gain 22< /p> < p> 1.4.2 Permittivity of Nanoplasmonic Metamaterial 22< /p> < p> 1.4.3 Plasmonic Eigenmodes and Effective Resonant Permittivity of Metamaterials 24< /p> < p> 1.4.4 Conditions of Loss Compensation by Gain and Spasing 25< /p> < p> 1.4.5 Discussion of Spasing and Loss Compensation by Gain 27< /p> < p> 1.4.6 Discussion of Published Research on Spasing and Loss Compensations 29< /p> < p> < b> 2 Nonlinear Effects in Plasmonic Systems 41< /b> < br /> < i> Pavel Ginzburg and Meir Orenstein< /i> < /p> < p> 2.1 Introduction 41< /p> < p> 2.2 Metallic Nonlinearities& mdash Basic Effects and Models 43< /p> < p> 2.2.1 Local Nonlinearity& mdash Transients by Carrier Heating 43< /p> < p> 2.2.2 Plasma Nonlinearity& mdash The Ponderomotive Force 45< /p> < p> 2.2.3 Parametric Process in Metals 46< /p> < p> 2.2.4 Metal Damage and Ablation 48< /p> < p> 2.3 Nonlinear Propagation of Surface Plasmon Polaritons 49< /p> < p> 2.3.1 Nonlinear SPP Modes 50< /p> < p> 2.3.2 Plasmon Solitons 50< /p> < p> 2.3.3 Nonlinear Plasmonic Waveguide Couplers 54< /p> < p> 2.4 Localized Surface Plasmon Nonlinearity 55< /p> < p> 2.4.1 Cavities and Nonlinear Interactions Enhancement 56< /p> < p> 2.4.2 Enhancement of Nonlinear Vacuum Effects 58< /p> < p> 2.4.3 High Harmonic Generation 60< /p> < p> 2.4.4 Localized Field Enhancement Limitations 60< /p> < p> 2.5 Summary 62< /p> < p> < b> 3 Plasmonic Nanorod Metamaterials as a Platform for Active Nanophotonics 69< /b> < br /> < i> Gregory A. Wurtz, Wayne Dickson, Anatoly V. Zayats, Antony Murphy, and Robert J. Pollard< /i> < /p> < p> 3.1 Introduction 69< /p> < p> 3.2 Nanorod Metamaterial Geometry 71< /p> < p> 3.3 Optical Properties 72< /p> < p> 3.3.1 Microscopic Description of the Metamaterial Electromagnetic Modes 72< /p> < p> 3.3.2 Effective Medium Theory of the Nanorod Metamaterial 76< /p> < p> 3.3.3 Epsilon-Near-Zero Metamaterials and Spatial Dispersion Effects 79< /p> < p> 3.3.4 Guided Modes in the Anisotropic Metamaterial Slab 82< /p> < p> 3.4 Nonlinear Effects in Nanorod Metamaterials 82< /p> < p> 3.4.1 Nanorod Metamaterial Hybridized with Nonlinear Dielectric 84< /p> < p> 3.4.2 Intrinsic Metal Nonlinearity of Nanorod Metamaterials 85< /p> < p> 3.5 Molecular Plasmonics in Metamaterials 89< /p> < p> 3.6 Electro-Optical Effects in Plasmonic Nanorod Metamaterial Hybridized with Liquid Crystals 97< /p> < p> 3.7 Conclusion 98< /p> < p> < b> 4 Transformation Optics for Plasmonics 105< /b> < br /> < i> Alexandre Aubry and John B. Pendry< /i> < /p> < p> 4.1 Introduction 105< /p> < p> 4.2 The Conformal Transformation Approach 108< /p> < p> 4.2.1 A Set of Canonic Plasmonic Structures 109< /p> < p> 4.2.2 Perfect Singular Struct < /p> < p> 4.6.3 Fluorescence Enhancement 137< /p> < p> 4.6.3.1 Fluorescence Enhancement in the Near-Field of Nanoantenna 138< /p> < p> 4.6.3.2 The CT Approach 139< /p> < p> 4.7 Nonlocal effects 142< /p> < p> 4.7.1 Conformal Mapping of Nonlocality 142< /p> < p> 4.7.2 Toward the Physics of Local Dimers 143< /p> < p> 4.8 Summary and Outlook 145< /p> < p> < b> 5 Loss Compensation and Amplification of Surface Plasmon Polaritons 153< /b> < br /> < i> Pierre Berini< /i> < /p> < p> 5.1 Introduction 153< /p> < p> 5.2 Surface Plasmon Waveguides 154< /p> < p> 5.2.1 Unidimensional Structures 154< /p> < p> 5.2.2 Bidimensional Structures 156< /p> < p> 5.2.3 Confinement-Attenuation Trade-Off 156< /p> < p> 5.2.4 Optical Processes Involving SPPs 157< /p> < p> 5.3 Single Interface 157< /p> < p> 5.3.1 Theoretical 157< /p> < p> 5.3.2 Experimental 158< /p> < p> 5.4 Symmetric Metal Films 160< /p> < p> 5.4.1 Gratings 160< /p> < p> 5.4.2 Theoretical 160< /p> < p> 5.4.3 Experimental 161< /p> < p> 5.5 Metal Clads 163< /p> < p> 5.5.1 Theoretical 164< /p> < p> 5.5.2 Experimental 164< /p> < p> 5.6 Other Structures 164< /p> < p> 5.6.1 Dielectric-Loaded SPP Waveguides 164< /p> < p> 5.6.2 Hybrid SPP Waveguide 165< /p> < p> 5.6.3 Nanostructures 166< /p> < p> 5.7 Conclusions 166< /p> < p> < b> 6 Controlling Light Propagation with Interfacial Phase Di, John Wiley & Sons

New book Rheinberg-Buch.de
Shipping costs:Ab 20¤ Versandkostenfrei in Deutschland, Sofort lieferbar, DE. (EUR 0.00)
Details...
(*) Book out-of-stock means that the book is currently not available at any of the associated platforms we search.
Active Plasmonics and Tuneable Plasmonic Metamaterials - Anatoly V. Zayats
book is out-of-stock
(*)
Anatoly V. Zayats:
Active Plasmonics and Tuneable Plasmonic Metamaterials - new book

2007, ISBN: 9781118634424

ID: 9781118634424

InhaltsangabePreface xiiiContributors xvii1 Spaser, Plasmonic Amplification, and Loss Compensation 1Mark I. Stockman1.1 Introduction to Spasers and Spasing 11.2 Spaser Fundamentals 21.2.1 Brief Overview of the Latest Progress in Spasers 51.3 Quantum Theory of Spaser 71.3.1 Surface Plasmon Eigenmodes and Their Quantization 71.3.2 Quantum Density Matrix Equations (Optical Bloch Equations) for Spaser 91.3.3 Equations for CW Regime 111.3.4 Spaser operation in CW Mode 151.3.5 Spaser as Ultrafast Quantum Nanoamplifier 171.3.6 Monostable Spaser as a Nanoamplifier in Transient Regime 181.4 Compensation of Loss by Gain and Spasing 221.4.1 Introduction to Loss Compensation by Gain 221.4.2 Permittivity of Nanoplasmonic Metamaterial 221.4.3 Plasmonic Eigenmodes and Effective Resonant Permittivity of Metamaterials 241.4.4 Conditions of Loss Compensation by Gain and Spasing 251.4.5 Discussion of Spasing and Loss Compensation by Gain 271.4.6 Discussion of Published Research on Spasing and Loss Compensations 292 Nonlinear Effects in Plasmonic Systems 41Pavel Ginzburg and Meir Orenstein2.1 Introduction 412.2 Metallic Nonlinearities& mdash Basic Effects and Models 432.2.1 Local Nonlinearity& mdash Transients by Carrier Heating 432.2.2 Plasma Nonlinearity& mdash The Ponderomotive Force 452.2.3 Parametric Process in Metals 462.2.4 Metal Damage and Ablation 482.3 Nonlinear Propagation of Surface Plasmon Polaritons 492.3.1 Nonlinear SPP Modes 502.3.2 Plasmon Solitons 502.3.3 Nonlinear Plasmonic Waveguide Couplers 542.4 Localized Surface Plasmon Nonlinearity 552.4.1 Cavities and Nonlinear Interactions Enhancement 562.4.2 Enhancement of Nonlinear Vacuum Effects 582.4.3 High Harmonic Generation 602.4.4 Localized Field Enhancement Limitations 602.5 Summary 623 Plasmonic Nanorod Metamaterials as a Platform for Active Nanophotonics 69Gregory A. Wurtz, Wayne Dickson, Anatoly V. Zayats, Antony Murphy, and Robert J. Pollard3.1 Introduction 693.2 Nanorod Metamaterial Geometry 713.3 Optical Properties 723.3.1 Microscopic Description of the Metamaterial Electromagnetic Modes 723.3.2 Effective Medium Theory of the Nanorod Metamaterial 763.3.3 Epsilon-Near-Zero Metamaterials and Spatial Dispersion Effects 793.3.4 Guided Modes in the Anisotropic Metamaterial Slab 823.4 Nonlinear Effects in Nanorod Metamaterials 823.4.1 Nanorod Metamaterial Hybridized with Nonlinear Dielectric 843.4.2 Intrinsic Metal Nonlinearity of Nanorod Metamaterials 853.5 Molecular Plasmonics in Metamaterials 893.6 Electro-Optical Effects in Plasmonic Nanorod Metamaterial Hybridized with Liquid Crystals 973.7 Conclusion 984 Transformation Optics for Plasmonics 105Alexandre Aubry and John B. Pendry4.1 Introduction 1054.2 The Conformal Transformation Approach 1084.2.1 A Set of Canonic Plasmonic Structures 1094.2.2 Perfect Singular Struct 4.6.3 Fluorescence Enhancement 1374.6.3.1 Fluorescence Enhancement in the Near-Field of Nanoantenna 1384.6.3.2 The CT Approach 1394.7 Nonlocal effects 1424.7.1 Conformal Mapping of Nonlocality 1424.7.2 Toward the Physics of Local Dimers 1434.8 Summary and Outlook 1455 Loss Compensation and Amplification of Surface Plasmon Polaritons 153Pierre Berini5.1 Introduction 1535.2 Surface Plasmon Waveguides 1545.2.1 Unidimensional Structures 1545.2.2 Bidimensional Structures 1565.2.3 Confinement-Attenuation Trade-Off 1565.2.4 Optical Processes Involving SPPs 1575.3 Single Interface 1575.3.1 Theoretical 1575.3.2 Experimental 1585.4 Symmetric Metal Films 1605.4.1 Gratings 1605.4.2 Theoretical 1605.4.3 Experimental 1615.5 Metal Clads 1635.5.1 Theoretical 1645.5.2 Experimental 1645.6 Other Structures 1645.6.1 Dielectric-Loaded SPP Waveguides 1645.6.2 Hybrid SPP Waveguide 1655.6.3 Nanostructures 1665.7 Conclusions 1666 Controlling Light Propagation with Interfacial Phase Discontinuities 171Nanfang Yu, Mikhail A. Kats, Patrice Genevet, Francesco Aieta, Romain Blanchard, Guillaume Aoust, Zeno Gaburro, and Federico Capasso6.1 Phase Response of Optical Antennas 1726.1.1 Introduction 1726.1.2 Single Oscillator Model for Linear Optical Antennas 1746.1.3 Two-Oscillator Model for 2D Structures Supporting Two Orthogonal Plasmonic Modes 1766.1.4 Analytical Models for V-Shaped Optical Antennas 1796.1.5 Optical Properties of V-Shaped Antennas: Experiments and Simulations 1836.2 Applications of Phased Optical Antenna Arrays 1866.2.1 Generalized Laws of Reflection and Refraction: Meta-Interfaces with Phase Discontinuities 1866.2.2 Out-of-Plane Reflection and Refraction of Light by Meta-Interfaces 1926.2.3 Giant and Tuneable Optical Birefringence 1976.2.4 Vortex Beams Created by Meta-Interfaces 2007 Integrated Plasmonic Detectors 219Pieter Neutens and Paul Van Dorpe7.1 Introduction 2197.2 Electrical Detection of Surface Plasmons 2217.2.1 Plasmon Detection with Tunnel Junctions 2217.2.2 Plasmon-Enhanced Solar Cells 2227.2.3 Plasmon-Enhanced Photodetectors 2257.2.4 Waveguide-Integrated Surface Plasmon Polariton Detectors 2327.3 Outlook 2368 Terahertz Plasmonic Surfaces for Sensing 243Stephen M. Hanham and Stefan A. Maier8.1 The Terahertz Region for Sensing 2448.2 THz Plasmonics 2448.3 SPPs on Semiconductor Surfaces 2458.3.1 Active Control of Semiconductor Plasmonics 2478.4 SSPP on Structured Metal Surfaces 2478.5 THz Plasmonic Antennas 2498.6 Extraordinary Transmission 2538.7 THz Plasmons on Graphene 2559 Subwavelength Imaging by Extremely Anisotropic Media 261Pavel A. Belov9.1 Introduction to Canalization Regime of Subwavelength Imaging 2619.2 W Nonlinear Materials for Controlling Nanoslit Lenses 30010.4 Lamellar Structures with Hyperbolic Dispersion Enable Subwavelength Focusing with Metallic Nanoslits 30110.4.1 Active Lamellar Structures with Hyperbolic Dispersion 30210.4.2 Subwavelength Focusing with Active Lamellar Structures 30710.4.3 Experimental Demonstration of Subwavelength Diffraction 30810.5 Summary 313Acknowledgments 313References 313 Active Plasmonics and Tuneable Plasmonic Metamaterials: InhaltsangabePreface xiiiContributors xvii1 Spaser, Plasmonic Amplification, and Loss Compensation 1Mark I. Stockman1.1 Introduction to Spasers and Spasing 11.2 Spaser Fundamentals 21.2.1 Brief Overview of the Latest Progress in Spasers 51.3 Quantum Theory of Spaser 71.3.1 Surface Plasmon Eigenmodes and Their Quantization 71.3.2 Quantum Density Matrix Equations (Optical Bloch Equations) for Spaser 91.3.3 Equations for CW Regime 111.3.4 Spaser operation in CW Mode 151.3.5 Spaser as Ultrafast Quantum Nanoamplifier 171.3.6 Monostable Spaser as a Nanoamplifier in Transient Regime 181.4 Compensation of Loss by Gain and Spasing 221.4.1 Introduction to Loss Compensation by Gain 221.4.2 Permittivity of Nanoplasmonic Metamaterial 221.4.3 Plasmonic Eigenmodes and Effective Resonant Permittivity of Metamaterials 241.4.4 Conditions of Loss Compensation by Gain and Spasing 251.4.5 Discussion of Spasing and Loss Compensation by Gain 271.4.6 Discussion of Published Research on Spasing and Loss Compensations 292 Nonlinear Effects in Plasmonic Systems 41Pavel Ginzburg and Meir Orenstein2.1 Introduction 412.2 Metallic Nonlinearities& mdash Basic Effects and Models 432.2.1 Local Nonlinearity& mdash Transients by Carrier Heating 432.2.2 Plasma Nonlinearity& mdash The Ponderomotive Force 452.2.3 Parametric Process in Metals 462.2.4 Metal Damage and Ablation 482.3 Nonlinear Propagation of Surface Plasmon Polaritons 492.3.1 Nonlinear SPP Modes 502.3.2 Plasmon Solitons 502.3.3 Nonlinear Plasmonic Waveguide Couplers 542.4 Localized Surface Plasmon Nonlinearity 552.4.1 Cavities and Nonlinear Interactions Enhancement 562.4.2 Enhancement of Nonlinear Vacuum Effects 582.4.3 High Harmonic Generation 602.4.4 Localized Field Enhancement Limitations 602.5 Summary 623 Plasmonic Nanorod Metamaterials as a Platform for Active Nanophotonics 69Gregory A. Wurtz, Wayne Dickson, Anatoly V. Zayats, Antony Murphy, and Robert J. Pollard3.1 Introduction 693.2 Nanorod Metamaterial Geometry 713.3 Optical Properties 723.3.1 Microscopic Description of the Metamaterial Electromagnetic Modes 723.3.2 Effective Medium Theory of the Nanorod Metamaterial 763.3.3 Epsilon-Near-Zero Metamaterials and Spatial Dispersion Effects 793.3.4 Guided Modes in the Anisotropic Metamaterial Slab 823.4 Nonlinear Effects in Nanorod Metamaterials 823.4.1 Nanorod Metamaterial Hybridized with Nonlinear Dielectric 843.4.2 Intrinsic Metal Nonlinearity of Nanorod Metamaterials 853.5 Molecular Plasmonics in Metamaterials 893.6 Electro-Optical Effects in Plasmonic Nanorod Metamaterial Hybridized with Liquid Crystals 973.7 Conclusion 984 Transformation Optics for Plasmonics 105Alexandre Aubry and John B. Pendry4.1 Introduction 1054.2 The Conformal Transformation Approach 1084.2.1 A Set of Canonic Plasmonic Structures 1094.2.2 Perfect Singular Struct 4.6.3 Fluorescence Enhancement 1374.6.3.1 Fluorescence Enhancement in the Near-Field of Nanoantenna 1384.6.3.2 The CT Approach 1394.7 Nonlocal effects 1424.7.1 Conformal Mapping of Nonlocality 1424.7.2 Toward the Physics of Local Dimers 1434.8 Summary and Outlook 1455 Loss Compensation and Amplification of Surface Plasmon Polaritons 153Pierre Berini5.1 Introduction 1535.2 Surface Plasmon Waveguides 1545.2.1 Unidimensional Structures 1545.2.2 Bidimensional Structures 1565.2.3 Confinement-Attenuation Trade-Off 1565.2.4 Optical Processes Involving SPPs 1575.3 Single Interface 1575.3.1 Theoretical 1575.3.2 Experimental 1585.4 Symmetric Metal Films 1605.4.1 Gratings 1605.4.2 Theoretical 1605.4.3 Experimental 1615.5 Metal Clads 1635.5.1 Theoretical 1645.5.2 Experimental 1645.6 Other Structures 1645.6.1 Dielectric-Loaded SPP Waveguides 1645.6.2 Hybrid SPP Waveguide 1655.6.3 Nanostructures 1665.7 Conclusions 1666 Controlling Light Propagation with Interfacial Phase Discontinuities 171Nanfang Yu, Mikhail A. Kats, Patrice Genevet, Francesco Aieta, Romain Blanchard, Guillaume Aoust, Zeno Gaburro, and Federico Capasso6.1 Phase Response of Optical Antennas 1726.1.1 Introduction 1726.1.2 Single Oscillator Model for Linear Optical Antennas 1746.1.3 Two-Oscillator Model for 2D Structures Supporting Two Orthogonal Plasmonic Modes 1766.1.4 Analytical Models for V-Shaped Optical Antennas 1796.1.5 Optical Properties of V-Shaped Antennas: Experiments and Simulations 1836.2 Applications of Phased Optical Antenna Arrays 1866.2.1 Generalized Laws of Reflection and Refraction: Meta-Interfaces with Phase Discontinuities 1866.2.2 Out-of-Plane Reflection and Refraction of Light by Meta-Interfaces 1926.2.3 Giant and Tuneable Optical Birefringence 1976.2.4 Vortex Beams Created by Meta-Interfaces 2007 Integrated Plasmonic Detectors 219Pieter Neutens and Paul Van Dorpe7.1 Introduction 2197.2 Electrical Detection of Surface Plasmons 2217.2.1 Plasmon Detection with Tunnel Junctions 2217.2.2 Plasmon-Enhanced Solar Cells 2227.2.3 Plasmon-Enhanced Photodetectors 2257.2.4 Waveguide-Integrated Surface Plasmon Polariton Detectors 2327.3 Outlook 2368 Terahertz Plasmonic Surfaces for Sensing 243Stephen M. Hanham and Stefan A. Maier8.1 The Terahertz Region for Sensing 2448.2 THz Plasmonics 2448.3 SPPs on Semiconductor Surfaces 2458.3.1 Active Control of Semiconductor Plasmonics 2478.4 SSPP on Structured Metal Surfaces 2478.5 THz Plasmonic Antennas 2498.6 Extraordinary Transmission 2538.7 THz Plasmons on Graphene 2559 Subwavelength Imaging by Extremely Anisotropic Media 261Pavel A. Belov9.1 Introduction to Canalization Regime of Subwavelength Imaging 2619.2 W Nonlinear Materials for Controlling Nanoslit Lenses 30010.4 Lamellar Structures with Hyperbolic Dispersion Enable Subwavelength Focusing with Metallic Nanoslits 30110.4.1 Active Lamellar Structures with Hyperbolic Dispersion 30210.4.2 Subwavelength Focusing with Active Lamellar Structures 30710.4.3 Experimental Demonstration of Subwavelength Diffraction 30810.5 Summary 313Acknowledgments 313References 313 Electronic Materials Elektronische Materialien Materials Science Materialwissenschaften Nanomaterialien Nanomaterials Nanotechnologie Nanotechnology Optics & Photonics Optik u. Photonik Physics Physik Plasmonics, John Wiley & Sons

New book Rheinberg-Buch.de
Ebook, Englisch, Neuware Shipping costs:Ab 20¤ Versandkostenfrei in Deutschland, Sofort lieferbar, DE. (EUR 0.00)
Details...
(*) Book out-of-stock means that the book is currently not available at any of the associated platforms we search.
Active Plasmonics and Tuneable Plasmonic Metamaterials - Anatoly V. Zayats, Stefan Maier
book is out-of-stock
(*)
Anatoly V. Zayats, Stefan Maier:
Active Plasmonics and Tuneable Plasmonic Metamaterials - new book

2010, ISBN: 9781118634424

ID: 843016

This book, edited by two of the most respected researchers in plasmonics,  gives an overview of the current state in plasmonics and plasmonic-based metamaterials, with an emphasis on active functionalities and an eye to future developments. This book is multifunctional, useful for newcomers and scientists interested in applications of plasmonics and metamaterials as well as for established researchers in this multidisciplinary area.ANATOLY V. ZAYATS, PhD, is Professor of Experimental Physics and the Head of the Experimental Biophysics and Nanotechnology Group at King´s College London. He also leads the UK EPSRC research program on active plasmonics. He is a Fellow of the Institute of Physics, the Optical Society of America, and SPIE.STEFAN MAIER, PhD, is the Co-Director of the Centre for Plasmonics and Metamaterials at Imperial College London. He was the recipient of the 2010 Sackler Prize in the Physical Sciences and the 2010 Paterson Medal of the Institute of Physics. A Fellow of the OSA and Institute of Physics, Dr. Maier has published over 130 journal articles in the area of nanoplasmonics, and is a frequent invited speaker at international conferences.[PU:Wiley]

New book Ciando.de
ciando.de
http://www.ciando.com/img/books/111863442X_k.jpg, E-Book zum Download Shipping costs:Versandkostenfrei innerhalb der BRD (EUR 0.00)
Details...
(*) Book out-of-stock means that the book is currently not available at any of the associated platforms we search.
Active Plasmonics and Tuneable Plasmonic Metamaterials - Anatoly V. Zayats; Stefan Maier
book is out-of-stock
(*)
Anatoly V. Zayats; Stefan Maier:
Active Plasmonics and Tuneable Plasmonic Metamaterials - First edition

2013, ISBN: 9781118634424

ID: 27131855

[ED: 1], 1., Auflage, eBook Download (EPUB,PDF), eBooks, [PU: John Wiley & Sons]

New book Lehmanns.de
Shipping costs:Download sofort lieferbar, , Versandkostenfrei innerhalb der BRD (EUR 0.00)
Details...
(*) Book out-of-stock means that the book is currently not available at any of the associated platforms we search.
Active Plasmonics and Tuneable Plasmonic Metamaterials - Anatoly V. Zayats;  Stefan Maier
book is out-of-stock
(*)
Anatoly V. Zayats; Stefan Maier:
Active Plasmonics and Tuneable Plasmonic Metamaterials - First edition

2013, ISBN: 9781118634424

ID: 27131855

[ED: 1], Auflage, eBook Download (EPUB,PDF), eBooks, [PU: Wiley]

New book Lehmanns.de
Shipping costs:Download sofort lieferbar, , Versandkostenfrei innerhalb der BRD (EUR 0.00)
Details...
(*) Book out-of-stock means that the book is currently not available at any of the associated platforms we search.