##### Detailseite wird geladen...

2011, ISBN: 1156574587

ID: 13945275550

[EAN: 9781156574584], Neubuch, [PU: Reference Series Books Llc Nov 2011], MATHEMATICS / LOGIC, This item is printed on demand - Print on Demand Titel. Neuware - Source: Wikipedia. Pages: 88. Chapters: Mathematical induction, Presburger arithmetic, Gödel's completeness theorem, Soundness, Natural deduction, Original proof of Gödel's completeness theorem, Consistency, Gödel's incompleteness theorems, Curry-Howard correspondence, Mathematical fallacy, Reverse mathematics, Sequent calculus, Large countable ordinal, Hilbert system, Deduction theorem, Fast-growing hierarchy, Ordinal notation, O-consistent theory, Decidability, Undecidable problem, Hilbert's program, Metalanguage, Extension by definitions, Ordinal analysis, Veblen function, Dialectica interpretation, Gödel-Gentzen negative translation, Pure type system, Herbrand's theorem, Cut-elimination theorem, Bounded quantifier, Slow-growing hierarchy, Gentzen's consistency proof, Elementary function arithmetic, Realizability, Conservative extension, Formal proof, Setoid, Lambda-mu calculus, Primitive recursive functional, Hardy hierarchy, Epsilon calculus, Peano-Russell notation, Independence, Analytic proof, Structural proof theory, Turnstile, Judgment, Proof calculus, Friedman translation, Self-verifying theories, Structural rule, Bachmann-Howard ordinal, Proof-theoretic semantics, Provability logic, Disjunction and existence properties, Conservativity theorem, Paraconsistent mathematics, Deep inference, Psi0(Omega omega), Takeuti's conjecture, Deductive system, Geometry of interaction, Tolerant sequence, Weak interpretability, Proof procedure, Decidable sublanguages of set theory, Feferman-Schütte ordinal, Church-Kleene ordinal, Proof mining, Completeness of atomic initial sequents, Proof net, VIPER microprocessor, NuPRL, Reverse reconstruction. Excerpt: Gödel's incompleteness theorems are two theorems of mathematical logic that establish inherent limitations of all but the most trivial axiomatic systems capable of doing mathematics. The theorems, proven by Kurt Gödel in 1931, are important both in mathematical logic and in the philosophy of mathematics. The two results are widely interpreted as showing that Hilbert's program to find a complete and consistent set of axioms for all of mathematics is impossible, thus giving a negative answer to Hilbert's second problem. The first incompleteness theorem states that no consistent system of axioms whose theorems can be listed by an 'effective procedure' (essentially, a computer program) is capable of proving all facts about the natural numbers. For any such system, there will always be statements about the natural numbers that are true, but that are unprovable within the system. The second incompleteness theorem shows that if such a system is also capable of proving certain basic facts about the natural numbers, then one particular arithmetic truth the system cannot prove is the consistency of the system itself. Because statements of a formal theory are written in symbolic form, it is possible to mechanically verify that a formal proof from a finite set of axioms is valid. This task, known as automatic proof verification, is closely related to automated theorem proving. The difference is that instead of constructing a new proof, the proof verifier simply checks that a provided formal proof (or, in some cases, instructions that can be followed to create a formal proof) is correct. This process is not merely hypothetical; systems such as Isabelle are used today to formalize proofs and then check their validity. Many theories of interest include an infinite set of axioms, however. To verify a formal . 88 pp. Englisch

Abebooks.de
AHA-BUCH GmbH, Einbeck, NDS, Germany [51283250] [Rating: 5 (von 5)]
NEW BOOK Shipping costs: EUR 19.95 Details... |

2010, ISBN: 9781156574584

[ED: Pappeinband], [PU: Bertrams Print On Demand], - Source: Wikipedia. Pages: 88. Chapters: Mathematical induction, Presburger arithmetic, Gödel's completeness theorem, Soundness, Natural deduction, Original proof of Gödel's completeness theorem, Consistency, Gödel's incompleteness theorems, Curry-Howard correspondence, Mathematical fallacy, Reverse mathematics, Sequent calculus, Large countable ordinal, Hilbert system, Deduction theorem, Fast-growing hierarchy, Ordinal notation, O-consistent theory, Decidability, Undecidable problem, Hilbert's program, Metalanguage, Extension by definitions, Ordinal analysis, Veblen function, Dialectica interpretation, Gödel-Gentzen negative translation, Pure type system, Herbrand's theorem, Cut-elimination theorem, Bounded quantifier, Slow-growing hierarchy, Gentzen's consistency proof, Elementary function arithmetic, Realizability, Conservative extension, Formal proof, Setoid, Lambda-mu calculus, Primitive recursive functional, Hardy hierarchy, Epsilon calculus, Peano-Russell notation, Independence, Analytic proof, Structural proof theory, Turnstile, Judgment, Proof calculus, Friedman translation, Self-verifying theories, Structural rule, Bachmann-Howard ordinal, Proof-theoretic semantics, Provability logic, Disjunction and existence properties, Conservativity theorem, Paraconsistent mathematics, Deep inference, Psi0(Omega omega), Takeuti's conjecture, Deductive system, Geometry of interaction, Tolerant sequence, Weak interpretability, Proof procedure, Decidable sublanguages of set theory, Feferman-Schütte ordinal, Church-Kleene ordinal, Proof mining, Completeness of atomic initial sequents, Proof net, VIPER microprocessor, NuPRL, Reverse reconstruction. Excerpt: Gödel's incompleteness theorems are two theorems of mathematical logic that establish inherent limitations of all but the most trivial axiomatic systems capable of doing mathematics. The theorems, proven by Kurt Gödel in 1931, are important both in mathematical logic and in the philosophy of mathematics. The two results are widely interpreted as showing that Hilbert's program to find a complete and consistent set of axioms for all of mathematics is impossible, thus giving a negative answer to Hilbert's second problem. The first incompleteness theorem states that no consistent system of axioms whose theorems can be listed by an effective procedure (essentially, a computer program) is capable of proving all facts about the natural numbers. For any such system, there will always be statements about the natural numbers that are true, but that are unprovable within the system. The second incompleteness theorem shows that if such a system is also capable of proving certain basic facts about the natural numbers, then one particular arithmetic truth the system cannot prove is the consistency of the system itself. Because statements of a formal theory are written in symbolic form, it is possible to mechanically verify that a formal proof from a finite set of axioms is valid. This task, known as automatic proof verification, is closely related to automated theorem proving. The difference is that instead of constructing a new proof, the proof verifier simply checks that a provided formal proof (or, in some cases, instructions that can be followed to create a formal proof) is correct. This process is not merely hypothetical systems such as Isabelle are used today to formalize proofs and then check their validity. Many theories of interest include an infinite set of axioms, however. To verify a formal ... - Besorgungstitel - vorauss. Lieferzeit 3-5 Tage.., [SC: 0.00]

Booklooker.de |

ISBN: 9781156574584

[ED: Taschenbuch], [PU: Books LLC, Reference Series], Source: Wikipedia. Pages: 88. Chapters: Mathematical induction, Presburger arithmetic, Gödel's completeness theorem, Soundness, Natural deduction, Original proof of Gödel's completeness theorem, Consistency, Gödel's incompleteness theorems, Curry-Howard correspondence, Mathematical fallacy, Reverse mathematics, Sequent calculus, Large countable ordinal, Hilbert system, Deduction theorem, Fast-growing hierarchy, Ordinal notation, O-consistent theory, Decidability, Undecidable problem, Hilbert's program, Metalanguage, Extension by definitions, Ordinal analysis, Veblen function, Dialectica interpretation, Gödel-Gentzen negative translation, Pure type system, Herbrand's theorem, Cut-elimination theorem, Bounded quantifier, Slow-growing hierarchy, Gentzen's consistency proof, Elementary function arithmetic, Realizability, Conservative extension, Formal proof, Setoid, Lambda-mu calculus, Primitive recursive functional, Hardy hierarchy, Epsilon calculus, Peano-Russell notation, Independence, Analytic proof, Structural proof theory, Turnstile, Judgment, Proof calculus, Friedman translation, Self-verifying theories, Structural rule, Bachmann-Howard ordinal, Proof-theoretic semantics, Provability logic, Disjunction and existence properties, Conservativity theorem, Paraconsistent mathematics, Deep inference, Psi0(Omega omega), Takeuti's conjecture, Deductive system, Geometry of interaction, Tolerant sequence, Weak interpretability, Proof procedure, Decidable sublanguages of set theory, Feferman-Schütte ordinal, Church-Kleene ordinal, Proof mining, Completeness of atomic initial sequents, Proof net, VIPER microprocessor, NuPRL, Reverse reconstruction. Excerpt: Gödel's incompleteness theorems are two theorems of mathematical logic that establish inherent limitations of all but the most trivial axiomatic systems capable of doing mathematics. The theorems, proven by Kurt Gödel in 1931, are important both in mathematical logic and in the philosophy of mathematics. The two results are widely interpreted as showing that Hilbert's program to find a complete and consistent set of axioms for all of mathematics is impossible, thus giving a negative answer to Hilbert's second problem. The first incompleteness theorem states that no consistent system of axioms whose theorems can be listed by an "effective procedure" (essentially, a computer program) is capable of proving all facts about the natural numbers. For any such system, there will always be statements about the natural numbers that are true, but that are unprovable within the system. The second incompleteness theorem shows that if such a system is also capable of proving certain basic facts about the natural numbers, then one particular arithmetic truth the system cannot prove is the consistency of the system itself. Because statements of a formal theory are written in symbolic form, it is possible to mechanically verify that a formal proof from a finite set of axioms is valid. This task, known as automatic proof verification, is closely related to automated theorem proving. The difference is that instead of constructing a new proof, the proof verifier simply checks that a provided formal proof (or, in some cases, instructions that can be followed to create a formal proof) is correct. This process is not merely hypothetical systems such as Isabelle are used today to formalize proofs and then check their validity. Many theories of interest include an infinite set of axioms, however. To verify a formal ...Versandfertig in 3-5 Tagen, [SC: 0.00]

Booklooker.de
buecher.de GmbH & Co. KG
Shipping costs:Versandkostenfrei, Versand nach Deutschland (EUR 0.00) Details... |

1931, ISBN: 9781156574584

[ED: Taschenbuch], [PU: Books LLC, Reference Series], Source: Wikipedia. Pages: 88. Chapters: Mathematical induction, Presburger arithmetic, Gödel's completeness theorem, Soundness, Natural deduction, Original proof of Gödel's completeness theorem, Consistency, Gödel's incompleteness theorems, Curry-Howard correspondence, Mathematical fallacy, Reverse mathematics, Sequent calculus, Large countable ordinal, Hilbert system, Deduction theorem, Fast-growing hierarchy, Ordinal notation, O-consistent theory, Decidability, Undecidable problem, Hilbert's program, Metalanguage, Extension by definitions, Ordinal analysis, Veblen function, Dialectica interpretation, Gödel-Gentzen negative translation, Pure type system, Herbrand's theorem, Cut-elimination theorem, Bounded quantifier, Slow-growing hierarchy, Gentzen's consistency proof, Elementary function arithmetic, Realizability, Conservative extension, Formal proof, Setoid, Lambda-mu calculus, Primitive recursive functional, Hardy hierarchy, Epsilon calculus, Peano-Russell notation, Independence, Analytic proof, Structural proof theory, Turnstile, Judgment, Proof calculus, Friedman translation, Self-verifying theories, Structural rule, Bachmann-Howard ordinal, Proof-theoretic semantics, Provability logic, Disjunction and existence properties, Conservativity theorem, Paraconsistent mathematics, Deep inference, Psi0(Omega omega), Takeuti's conjecture, Deductive system, Geometry of interaction, Tolerant sequence, Weak interpretability, Proof procedure, Decidable sublanguages of set theory, Feferman-Schütte ordinal, Church-Kleene ordinal, Proof mining, Completeness of atomic initial sequents, Proof net, VIPER microprocessor, NuPRL, Reverse reconstruction. Excerpt: Gödel's incompleteness theorems are two theorems of mathematical logic that establish inherent limitations of all but the most trivial axiomatic systems capable of doing mathematics. The theorems, proven by Kurt Gödel in 1931, are important both in mathematical logic and in the philosophy of mathematics. The two results are widely interpreted as showing that Hilbert's program to find a complete and consistent set of axioms for all of mathematics is impossible, thus giving a negative answer to Hilbert's second problem. The first incompleteness theorem states that no consistent system of axioms whose theorems can be listed by an "effective procedure" (essentially, a computer program) is capable of proving all facts about the natural numbers. For any such system, there will always be statements about the natural numbers that are true, but that are unprovable within the system. The second incompleteness theorem shows that if such a system is also capable of proving certain basic facts about the natural numbers, then one particular arithmetic truth the system cannot prove is the consistency of the system itself. Because statements of a formal theory are written in symbolic form, it is possible to mechanically verify that a formal proof from a finite set of axioms is valid. This task, known as automatic proof verification, is closely related to automated theorem proving. The difference is that instead of constructing a new proof, the proof verifier simply checks that a provided formal proof (or, in some cases, instructions that can be followed to create a formal proof) is correct. This process is not merely hypothetical systems such as Isabelle are used today to formalize proofs and then check their validity. Many theories of interest include an infinite set of axioms, however. To verify a formal ...Versandfertig in 3-5 Tagen, [SC: 0.00]

Booklooker.de
buecher.de GmbH & Co. KG
Shipping costs:Versandkostenfrei, Versand nach Deutschland (EUR 0.00) Details... |

Proof theory Mathematical induction, Presburger arithmetic, Gödel's completeness theorem, Soundness, Natural deduction, Original proof of Gödel's completeness theorem, Consistency, Gödel's incompleteness theorems, Curry-Howard correspondence

*- new book*

2011, ISBN: 1156574587

ID: A9610875

Kartoniert / Broschiert MATHEMATICS / Logic, mit Schutzumschlag neu, [PU:Books LLC, Reference Series]

Achtung-Buecher.de
MARZIES.de Buch- und Medienhandel, 14621 Schönwalde-Glien
Shipping costs:Versandkostenfrei innerhalb der BRD. (EUR 0.00) Details... |

** Details of the book - Proof Theory: Godel's Incompleteness Theorems**

EAN (ISBN-13): 9781156574584

ISBN (ISBN-10): 1156574587

Paperback

Publishing year: 2010

Publisher: Books LLC

344 Pages

Weight: 0,513 kg

Language: eng/Englisch

Book in our database since 04.06.2011 02:22:14

Book found last time on 18.11.2017 17:18:02

ISBN/EAN: 1156574587

ISBN - alternate spelling:

1-156-57458-7, 978-1-156-57458-4

< to archive...

##### Related books

- "Proofs: Turing's Proof", from "elisabeth walter, farley" (9781156574577)
- "Pronouns by Language: Portuguese Personal Pronouns", from "Books LLC" (9781156574560)
- "Propaganda Due: Turing's Proof", from "Books LLC" (9781156574607)
- "Pronouns: Generic Antecedent", from "Source Wikipedia, LLC Books (Editor)" (9781156574553)
- "Propaganda in the United States: Media Bias in the United States", from "LLC, BOOKS" (9781156574614)
- "Promotion and Marketing Communications: Propaganda, Advertising, Neuro-Linguistic Programming, Pyramid Scheme, Loyalty Program, Shill", from "Herausgeber: Source: Wikipedia" (9781156574546)