ISBN: 9780387685601
ID: 9780387685601
Time-to-event data are ubiquitous in fields such as medicine, biology, demography, sociology, economics and reliability theory. Recently, a need to analyze more complex event histories has emerged. Examples are individuals that move among several states, frailty that makes some units fail before others, internal time-dependent covariates, and the estimation of causal effects from observational data. The aim of this book is to bridge the gap between standard textbook models and a range of models where the dynamic structure of the data manifests itself fully. The common denominator of such models is stochastic processes. The authors show how counting processes, martingales, and stochastic integrals fit very nicely with censored data. Beginning with standard analyses such as Kaplan-Meier plots and Cox regression, the presentation progresses to the additive hazard model and recurrent event data. Stochastic processes are also used as natural models for individual frailty they allow sensible interpretations of a number of surprising artifacts seen in population data. The stochastic process framework is naturally connected to causality. The authors show how dynamic path analyses can incorporate many modern causality ideas in a framework that takes the time aspect seriously. To make the material accessible to the reader, a large number of practical examples, mainly from medicine, are developed in detail. Stochastic processes are introduced in an intuitive and non-technical manner. The book is aimed at investigators who use event history methods and want a better understanding of the statistical concepts. It is suitable as a textbook for graduate courses in statistics and biostatistics. Survival and Event History Analysis: Time-to-event data are ubiquitous in fields such as medicine, biology, demography, sociology, economics and reliability theory. Recently, a need to analyze more complex event histories has emerged. Examples are individuals that move among several states, frailty that makes some units fail before others, internal time-dependent covariates, and the estimation of causal effects from observational data. The aim of this book is to bridge the gap between standard textbook models and a range of models where the dynamic structure of the data manifests itself fully. The common denominator of such models is stochastic processes. The authors show how counting processes, martingales, and stochastic integrals fit very nicely with censored data. Beginning with standard analyses such as Kaplan-Meier plots and Cox regression, the presentation progresses to the additive hazard model and recurrent event data. Stochastic processes are also used as natural models for individual frailty they allow sensible interpretations of a number of surprising artifacts seen in population data. The stochastic process framework is naturally connected to causality. The authors show how dynamic path analyses can incorporate many modern causality ideas in a framework that takes the time aspect seriously. To make the material accessible to the reader, a large number of practical examples, mainly from medicine, are developed in detail. Stochastic processes are introduced in an intuitive and non-technical manner. The book is aimed at investigators who use event history methods and want a better understanding of the statistical concepts. It is suitable as a textbook for graduate courses in statistics and biostatistics., Springer-Verlag Gmbh
Rheinberg-Buch.de
Ebook, Englisch, Neuware Shipping costs:Ab 20¤ Versandkostenfrei in Deutschland, Sofort lieferbar, DE. (EUR 0.00)
Details... |
ISBN: 9780387685601
ID: 9780387685601
A Process Point of View The aim of this book is to bridge the gap between standard textbook models and a range of models where the dynamic structure of the data manifests itself fully. The common denominator of such models is stochastic processes. The authors show how counting processes, martingales, and stochastic integrals fit very nicely with censored data. Beginning with standard analyses such as Kaplan-Meier plots and Cox regression, the presentation progresses to the additive hazard model and recurrent event data. Stochastic processes are also used as natural models for individual frailty they allow sensible interpretations of a number of surprising artifacts seen in population data. The stochastic process framework is naturally connected to causality. The authors show how dynamic path analyses can incorporate many modern causality ideas in a framework that takes the time aspect seriously. To make the material accessible to the reader, a large number of practical examples, mainly from medicine, are developed in detail. Stochastic processes are introduced in an intuitive and non-technical manner. The book is aimed at investigators who use event history methods and want a better understanding of the statistical concepts. It is suitable as a textbook for graduate courses in statistics and biostatistics. Survival and Event History Analysis: The aim of this book is to bridge the gap between standard textbook models and a range of models where the dynamic structure of the data manifests itself fully. The common denominator of such models is stochastic processes. The authors show how counting processes, martingales, and stochastic integrals fit very nicely with censored data. Beginning with standard analyses such as Kaplan-Meier plots and Cox regression, the presentation progresses to the additive hazard model and recurrent event data. Stochastic processes are also used as natural models for individual frailty they allow sensible interpretations of a number of surprising artifacts seen in population data. The stochastic process framework is naturally connected to causality. The authors show how dynamic path analyses can incorporate many modern causality ideas in a framework that takes the time aspect seriously. To make the material accessible to the reader, a large number of practical examples, mainly from medicine, are developed in detail. Stochastic processes are introduced in an intuitive and non-technical manner. The book is aimed at investigators who use event history methods and want a better understanding of the statistical concepts. It is suitable as a textbook for graduate courses in statistics and biostatistics. Markov process Martingale Radiologieinformationssystem Sage Stochastic processes causality counting process counting processes cox regression model frailty models multivariate survival data statistics stochastic process B Epidemiology Proba, Springer New York
Rheinberg-Buch.de
Ebook, Englisch, Neuware Shipping costs:Ab 20¤ Versandkostenfrei in Deutschland, Sofort lieferbar, DE. (EUR 0.00)
Details... |
ISBN: 9780387685601
ID: 9780387685601
A Process Point of View The aim of this book is to bridge the gap between standard textbook models and a range of models where the dynamic structure of the data manifests itself fully. The common denominator of such models is stochastic processes. The authors show how counting processes, martingales, and stochastic integrals fit very nicely with censored data. Beginning with standard analyses such as Kaplan-Meier plots and Cox regression, the presentation progresses to the additive hazard model and recurrent event data. Stochastic processes are also used as natural models for individual frailty they allow sensible interpretations of a number of surprising artifacts seen in population data. The stochastic process framework is naturally connected to causality. The authors show how dynamic path analyses can incorporate many modern causality ideas in a framework that takes the time aspect seriously. To make the material accessible to the reader, a large number of practical examples, mainly from medicine, are developed in detail. Stochastic processes are introduced in an intuitive and non-technical manner. The book is aimed at investigators who use event history methods and want a better understanding of the statistical concepts. It is suitable as a textbook for graduate courses in statistics and biostatistics. Survival and Event History Analysis: The aim of this book is to bridge the gap between standard textbook models and a range of models where the dynamic structure of the data manifests itself fully. The common denominator of such models is stochastic processes. The authors show how counting processes, martingales, and stochastic integrals fit very nicely with censored data. Beginning with standard analyses such as Kaplan-Meier plots and Cox regression, the presentation progresses to the additive hazard model and recurrent event data. Stochastic processes are also used as natural models for individual frailty they allow sensible interpretations of a number of surprising artifacts seen in population data. The stochastic process framework is naturally connected to causality. The authors show how dynamic path analyses can incorporate many modern causality ideas in a framework that takes the time aspect seriously. To make the material accessible to the reader, a large number of practical examples, mainly from medicine, are developed in detail. Stochastic processes are introduced in an intuitive and non-technical manner. The book is aimed at investigators who use event history methods and want a better understanding of the statistical concepts. It is suitable as a textbook for graduate courses in statistics and biostatistics. counting processes Mathematics and Statistics Statistics for Life Sciences, Medicine, Health Sciences cox regression model Radiologieinformationssystem Probability Theory and Stochastic Processes Quality Control, Reliability, Safety and Risk Epidem, Springer New York
Rheinberg-Buch.de
Ebook, Englisch, Neuware Shipping costs:Ab 20¤ Versandkostenfrei in Deutschland, Sofort lieferbar, DE. (EUR 0.00)
Details... |
ISBN: 9780387685601
ID: 9780387685601
The aim of this book is to bridge the gap between standard textbook models and a range of models where the dynamic structure of the data manifests itself fully. The common denominator of such models is stochastic processes. The authors show how counting processes, martingales, and stochastic integrals fit very nicely with censored data. Beginning with standard analyses such as Kaplan-Meier plots and Cox regression, the presentation progresses to the additive hazard model and recurrent event data. Stochastic processes are also used as natural models for individual frailty they allow sensible interpretations of a number of surprising artifacts seen in population data. The stochastic process framework is naturally connected to causality. The authors show how dynamic path analyses can incorporate many modern causality ideas in a framework that takes the time aspect seriously. To make the material accessible to the reader, a large number of practical examples, mainly from medicine, are developed in detail. Stochastic processes are introduced in an intuitive and non-technical manner. The book is aimed at investigators who use event history methods and want a better understanding of the statistical concepts. It is suitable as a textbook for graduate courses in statistics and biostatistics. Survival and Event History Analysis: The aim of this book is to bridge the gap between standard textbook models and a range of models where the dynamic structure of the data manifests itself fully. The common denominator of such models is stochastic processes. The authors show how counting processes, martingales, and stochastic integrals fit very nicely with censored data. Beginning with standard analyses such as Kaplan-Meier plots and Cox regression, the presentation progresses to the additive hazard model and recurrent event data. Stochastic processes are also used as natural models for individual frailty they allow sensible interpretations of a number of surprising artifacts seen in population data. The stochastic process framework is naturally connected to causality. The authors show how dynamic path analyses can incorporate many modern causality ideas in a framework that takes the time aspect seriously. To make the material accessible to the reader, a large number of practical examples, mainly from medicine, are developed in detail. Stochastic processes are introduced in an intuitive and non-technical manner. The book is aimed at investigators who use event history methods and want a better understanding of the statistical concepts. It is suitable as a textbook for graduate courses in statistics and biostatistics., Springer-Verlag Gmbh
Rheinberg-Buch.de
Ebook, Englisch, Neuware Shipping costs:Ab 20¤ Versandkostenfrei in Deutschland, Sofort lieferbar, DE. (EUR 0.00)
Details... |
ISBN: 9780387685601
ID: 9780387685601
A Process Point of View `The aim of this book is to bridge the gap between standard textbook models and a range of models where the dynamic structure of the data manifests itself fully. The common denominator of such models is stochastic processes. The authors show how counting processes, martingales, and stochastic integrals fit very nicely with censored data. Beginning with standard analyses such as Kaplan-Meier plots and Cox regression, the presentation progresses to the additive hazard model and recurrent event data. Stochastic processes are also used as natural models for individual frailty they allow sensible interpretations of a number of surprising artifacts seen in population data. Survival and Event History Analysis: `The aim of this book is to bridge the gap between standard textbook models and a range of models where the dynamic structure of the data manifests itself fully. The common denominator of such models is stochastic processes. The authors show how counting processes, martingales, and stochastic integrals fit very nicely with censored data. Beginning with standard analyses such as Kaplan-Meier plots and Cox regression, the presentation progresses to the additive hazard model and recurrent event data. Stochastic processes are also used as natural models for individual frailty they allow sensible interpretations of a number of surprising artifacts seen in population data. Martingale causality Stochastic processes frailty models statistics multivariate survival data Sage Probability Theory and Stochastic Processes Statistics for Life Sciences, Medicine, Health Sciences Quality Control, Reliability, Safety and Risk, Springer New York
Rheinberg-Buch.de
Ebook, Englisch, Neuware Shipping costs:Ab 20¤ Versandkostenfrei in Deutschland, Sofort lieferbar, DE. (EUR 0.00)
Details... |
Author: | |
Title: | Survival and Event History Analysis - A Process Point of View |
ISBN: | 9780387685601 |
Details of the book - Survival and Event History Analysis - A Process Point of View
EAN (ISBN-13): 9780387685601
ISBN (ISBN-10): 038768560X
Publishing year: 2008
Publisher: Springer New York
540 Pages
Language: eng/Englisch
Book in our database since 02.12.2007 12:31:11
Book found last time on 13.09.2016 03:58:35
ISBN/EAN: 9780387685601
ISBN - alternate spelling:
0-387-68560-X, 978-0-387-68560-1
< to archive...
Nearby books
- "Intracellular Mechanisms for Neuritogenesis", from "Curtis, Ivan de" (9780387685618)
- "Multiscale Modeling and Simulation of Composite Materials and Structures", from "Kwon, Young W.; Allen, David H.; Talreja, Ramesh" (9780387685564)
- "Advances in Wireless Ad Hoc and Sensor Networks", from "Maggie Xiaoyan Cheng" (9780387685656)
- "Primer on the Rheumatic Diseases", from "John H. Klippel;John H. Stone;L eslie J. Crofford;Patience H. White" (9780387685663)
- "Advances in Wireless Ad Hoc and Sensor Networks", from "Cheng, Maggie Xiaoyan; Li, Deying" (9780387685670)
- "Synchronizing Internet Protocol Security (SIPSec)", from "Shoniregun, Charles A." (9780387685694)